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PERTURBED ROTATIONAL MOTIONS OF A RIGID BODY SIMILAR TO 
REGULAR PRECESSION* 

D.D. L~SHCHENKO and S-N. SALLAM 

Perturbed rotational motions of a rigid body, similar to regular 
precession in the Lagrange case, when the restoring torque depends on 
the angle of nutation, are investigated. It is assumed that the angular 
velocity of the body is fairly large, its direction are close to the 
dynamic axis of symmetry of the body and the perturbing torques are 
small compared with the restoring torques. A small parameter is 
introduced in a special way and the method of averaging is used. The 
averaged equations of motion are derived in the first and second 
approximations. Specific mechanical models of the perturbations are 
considered. 

Lagrange-like perturbed motions of a rigid body were also 
investigated in 111. Almost regular perturbed rotational motions of a 
rigid body have been studied f2, 3/,**(**See also LESHCHENKO D.D. and 
SALLAM S.N., Perturbed rotational motions of a rigid body with mass 
distribution close to the Lagrange case. Odessa, 1988. Dep, at UkrNIINTI 
28.06.1988, No.1656 - Uk 88.) and some attention has been given to 
pseudoregular***(***LESHCHHNKO D.D. and SALLAM S-N,, Perturbed motions 
of a rigid body similar to pseudoregular precession. Odessa, 1988. Dep. 
at UkrNIINTI 28.06.1988, No.1656 - Uk 88.) precession in the Lagrange 
case; in the former case it was assumed that a constant restoring torque 
is applied to the body. 

1. Statement of the problem. We consider the motion of a dynamically symmetric rigid 
body about a fixed point 0 due to a perturbing torque and a restoring torque depending on the 
angle of nutation 9. 

The equations of motion (dynamic and kinematic Euler equations) have the form 

Ap'+(C--A)qr=k(8)sin8eos(p~~~ 

Ag' + (A - C)pr = -k (8) sin 8 sin cp + M; 

Cr' = Ma, Mt = M, (p,q, r,(~, 8, 9, t) (i = 1, 2, 3) 

-+* = (p sin rp + g co9 tp)/sin 6, 8' = p cos ‘p - p sin cp 
T.-r--(psincp+qcoscp)ctg@ 

The dynamic equations are written in terms of projections on the body's principal axes 
of inertia, which pass through the point 0. Thus p, q, r are the projections of the angular 
velocity vector on these axes, M, (i = 1, 2, 3) are the projections of the vector of the 
perturbing torque on the same axes, 
@,0,~ with periods 2n, 

assumed to be periodic functions of the Euler angles 
and A is the equatorial and C is the axial moment of inertia about 

the point 0, A #C. 
It is assumed that a restoring torque k(8) depending on the angle of nutation is applied 

to the body. In the case of a heavy top we have k = Ilbgl, where m is the mass of the body, 
g is the acceleration due to gravity and to the 
centre of gravity of the body. 

?, is the distance from the fixed point 0 

The perturbing torques Mi in (1.1) are assumed to be known functions of their arguments. 
If there are no perturbations (firi = 0, L =1,2,3) and k (0) = c0r1st , Eqs.fl.1) are those of 
the Lagrange case. 

We will make the following assumptions: 

p2 + qz < P, Cr2 > k, 1 Mi I< k (i = 1, 2, 3) 
(1.2) 

which mean that the direction of the angular velocity of the body is close to the dynamic 
axis of symmetry, the angular velocity is large enough to impart to the body kinetic energy 
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significantly exceeding the potential energy due to the restoring torque, and the perturbing 
torques are small compared with the restoring torques. Inequalities (1.2) justify the in- 
troduction of a small parameter S<f, so that 

Conditions (1.2) and (1.3) were also adopted in /3/, but there the restoring torque k 
was assumed to be constant. In /2/ the third inequality of (1.2) was replaced by the con- 
dition [M,I@k(r=l.2), &4,-k. 

The new variables P, & and the variables and constants r, IpV 8, rp, R, A, C, Rfi* are 
assumed to be bounded of the order of unity as F--f 0. Our problem is to investigate the 
asymptotic behaviour of system (1.1) for small E, provided that conditions (1.2) and (1.3) 
hold. We shall use the method of averaging /4-b/ over a time interval of length -S-r. 

2. Averaging procedure. Let us apply the transformation of variables (1.3) to system 
(1.1). Dividing both sides of the first two equations by E, we obtain 

AP’ + (C - A)@ = k’ j0)sin U cos cp i- ElIfIb (2.1) 

AQ’ + (A - C)Pr -= -K (6) sin 8 sin rp i- EM,* 
Cr' = ~?fiI~*, *' =i E (P sin v + Q cos cp)isin 0 

8' = e (P ces 'p - Q sin q~), v' = r-S (P sin 'p + Q COS 9)&Z 0 

Considering the zeroth-approximation system, we put E = 0 in (2.1). Then the last four 
equations of t2.1) yield 

r = rg, 9 = $0, 6 = 90, cp = r,t + V* f2.2) 

Here rol Il0, %, 'Pi are constants - the initial values of the appropriate variables at 
t = 0. Substituting expressions (2.2) into the first two equations of system (2.1) with 
&=O and integrating the resulting system of linear equations for P, Q, we obtain 

P = a cos y. + b sin y. + h, sin (rot f Q). 
Q = a sin y. - b cos y. + h, cos (rot +- cpo) 

a = P, - ho sin (po, b = -Q. + h, cos ‘p. 

h,, = K,C-‘ro-’ sin B,, y. = n,t, no = (C - A)A“r, # 0 

( n&-i, 1 -< 1, K, = K (0,) 

(2.3) 

Here PO, Q. are the initial values of the variables P, Q defined in (1.31, and the 
variable y = YO has the meaning of the phase of the oscillations. System (2.1) is essentially 
non-linear, and therefore we introduce an additional variable y, defined by the equation 

y' = n, y (0) = 0, n -= (C - A)A-‘r (2.4) 

For E = 0 we have v=yo=n,t by (2.3) Eqs.12.2) and (2.3) determine the general 
solution of system (2.1), (2.4) when E = 0. 

Using (2.2), we eliminate the constants from the first two equations of (2.3) and solve 
the resulting equations for cz and b: 

a = P eos y + Q sin y - h sin (y + qP) 
b = p Sin JI -Q cos JI + h cos (v + rp); h = KC-'r-'Sin U 

(2.5) 

Define a new variable 6 as follows: 

r = rD + f& (2.6) 

We now consider system (2.11 for FPO and Eqs.12.5) and (2.6) as transformation 
formulae (involving the variable yf from variables P, &, P to variables a, b, 6. Using these 
formulae, we transform system (2.1) and (2.4) from variables P, Q, i-, *, 0, 9, 7 to new vari- 
ables 4, b, 6, $. 8, a, y, where 

n=y+cp (2.7) 

After some reduction we obtain the following system: 

a' = FA-’ (Ml” eos y + IV%” sin y) - EKD,, cos 8 (b - KDll Sin 8 cos a) 
- ~lifD~~ Sin 8 sin a (a ces a + b sin a) + eaKD,, 6 cos 8 (b - 

(2.8) 
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2KD,, sin 8 cos a) + .@K’D,,6 sin 0 sin a (a ~0s a -I- 

b sin a) + IPKD,,M,” sin B sin a 

.g = aA-1 (M,O sin y - M,"cos y) + EKD,, cos 0 (a -/- KD,, sin % sin a) 

EKD,, sin 8~0s a (aces a + bsin a) - @KD,, 8 em@ (a -I- 
2KD,, sin 0 sin a)- E~K’D,, 6 sin 8 cos a (a cos a + b sin a)- 

E~KD,_M,” sin I3 cos cc D 

6' = EC-r&i,", +' = E (a sin a - b cos a)/sin 0 + EKD,, - E’KD~,~ 
8’ = F, (a cos a + b sin a), y' = n, + E (C - A)A-‘6 

a* = CA-‘r, + eCA-kT - e ctg % (Q sin o - b cos a)- eKD,, cos 0 -l- 

ELK&& cos % 

D,] = C-=rQ-‘, K’ = dK/d% 

Here M," are the functions obtained from AT,* (see (1.3)) after the substitution (2.5)- 
(2.7): 

Mi”(a,b,6,~,8,a,y,t)=M,*(P,Q,T,~,%,(f,’) (i=f,2,3) 

The system of Eqs.(2.8) has the form 

(2.9) 

I’ = EF1 (f, y) + &?F, (24 y), x (0) = x0 

Y” = 6’1 + % (G Y) + h!~ (G Yh Y1 (0) = Y” 
ye’ = 02 + chl (.z, y) + e2h2 (s, y), y2 (0) = y2’ 

(2.10) 

The vector-valued function r = (39, . . ., Z6) consists of the slow variables a, b, &%Ff; 
the syabols Y1 and y" denote the fast variables a,?; or,@, are constant phases, equal to 
CA-V, and (C - A)A-Ir, , respectively. The vector-valued functions P1, gi, h, (i = 1,2) are 
determined by the right-hand sides of Eqs.(2.8). 

We denote the two-dimensional vector (grr h,) by Z,. We shall assume that the perturbing 
torques Mi* do not depend on t. 

Following the well-known procedure for constructing asymptotic formulae for system (2.10) 
/5/, we shall try to find a change of variables 

z= I* + &z&r ia*, y*) + E2Uz (r*, y') + . . . 

y= y’ + ev, (r*, y*) + &lVd (I*, y*) + . . . 

y = (y’, y”), >* = (x*1, , . ., z*j), y” = (y*‘, y*2) 

which reduces system (2.1) to the form 

z*‘ = 'A,(Z") + E?A,(z*) -6 1.. 

Y *’ = 0 + e,B1 (.z*) + &%, (3+) +- . . ., 0 = 

To do this we must choose suitable functions Ulr Uzr VI? 1%. 
valued functions Ul, VI are /5/ 

c&u,/i?y* = Fr (z*, y’) -A, (s*) 

~~u~/~~* = 2, (x*,9*) -B, (x*) 

Here (tlf/ar) is the matrix of partial derivatives 11 af,/&$~~ 
-4, (I*), 4 b*) are defined by 

The equations for the vector- 

(2.12) 

(i, j = 1, 2, . . .( 5). The functions 

(2.13) 

The function ~+(x*,y*) must be a solution of the equation 

3 Q = G(x*, y*) -A,+*) (2.14) 
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The function A,@*) is defined as follows: 

npaa 

dz (.c*)= -& 1 5 G(.r*, y*)~Q/*ldy*~ 

0 0 
(2.15) 

We shall now determine the averaged system of equations to a first approximation for the 
slow variables 

as well as the 

and the system 

Xl *' = E-41 (+*), zl* (0) = J1" 

system to a second approximation for the slow variables 

x3*' = e/l, (x2*) + GA, (z2*), x2* (U) = -TO 

of equations in the second approximation for the fast variables 

(2.16) 

(2.17). 

which is readily integrated: 

y,*(t) = ya -1. wt 

y. * (0) = y”; y” = (y'O, yZO) L (2.15) 

i- a &* (S))ds (2.19) 
0 

To investigate the second-approximation system (2.17), we transform variables by putting 
% = Et, giving system (2.17) the form 

dx,*!dz = A, (x2*) + &AZ (q*) (2.20) 

In this case the time interval (O,T/e) over which the solutions of the original system 
(2.10) are being investigated becomes an interval (0, T) independent of a. The solution of 
system (2.20) is assumed to have the form 

t2* (T) = z(1) (T) + WP) (T) + 0 (e?) (2.24) 

Substituting (2.21) into (2.20), we obtain the following systems of equations for the 
vector-valued functions ~('1 (7) = 5, (t) (r = ct, i = 4, 2): 

dx(‘):dz = A, (z”‘), z(1) (0) = x,,, (2.22) 

dx@)/dT = A,’ (0 (T))x’“’ + -4: (x(l) (z)), xc’) (0) = 0 (2.23) 

where A,’ is the matrix of partial derivatives of the vector-valued function 4, (z): A,' (x) -.z 
11 aA,'/ax'jI. As system (2.22) is linear, it is often easier to investigate than system (2.20). 

Let X (~,c) denote the general solution of the first-approximation system (2.22): 

X, = A, (X), X (0, c) = c = x0 (2.24) 

Then the functions r(l) (T), z(") (r.) are given by the expressions 

r@)(t) = x (T, 2-J’ A*) (z) = cf, (z) i @,-I (TJ q (tl) dq (2.25) 
0 

Here d, is the fundamental matrix of the homogeneous equation corresponding to the second 
approximation: 

m (.c) = II ax (7, c)iac ~i~=*~, Y (T) = il, (z(l) (r)) = A, (X (T, 50)) 

Define a vector-valued function 

.r,” (t) = x(l) (ef) + ex@) (at) + euI (.I+) (et), y” _I- wt + e i B, (x(1) (ES) ds) 
0 

yew (t) = y” + of + E s 13, (x(l) (ES)) ds 
0 

(2.26) 

The above formal procedure for construction the functions zLu(t), y="(t) was justified in 

181. 
Thus, the construction of approximate solutions 4' (t), y,' (t) reduces to the following 

procedure: use Fourier series to solve Eqs.(2.12) and (2.14); then use formula (2.15) to con- 
struct the vector-valued function At@*); using (2.25), determine the solutions X(')(T) and 
x(Z) (r) of Eqs.(2.22) and (2.23); finally, use formula (2.26) to obtain the required 



approximations ~~'(6)~ &" (t). The procedure will now be implemented for a few specific systems 
of equations for the dynamics of a rigid body. 

Our examples of perturbations will all be such that the Fourier expansions of the right- 
hand sides of Eqs.fZ.12) and (2.14) contain only a finite number of terms. Hence the Con- 

dition for Eqs.(2.121 and (2.14) ta be solvable reduces to verification of a finite number of 
conditions of the form %ml+ osma=#=Q. In all our examples these conditions have the form 
CA-lrO =# 0, (C - A) A-%, + 0, and the latter are always satisfied thanks to QUY initial assumptions. 

As an example of a restoring torque which depends on 
the angle of nutation, let us consider a rigid body with a 
spring attached to it at a point )\I, with the end L of the 
spring fixed (see the figure). The farces acting on the 
body are the force of gravity mg and the elastic force F 
of the spring, whose modulus is proportional to the 
deformation of the spring P= Y (s-.s~), where v is the 
stiffness of the spring. In this ease the restoring tarque 
is 

k (B) - m&l + Vhx [I - .Q fka -j- 2% - 21es cos @f-‘1~ ] (2.271 

WhC?Ke O”“i = z, oc = I, OL = it, ix = s = 8 f@f. 

By (1.31, k (%) = +JK (B). 

3. The case of tinear rrpplied dissipative torques. 
We will now consider the perturbed mation of a rigid body 
in the Lagrange case, allowing for the torques applied to 
the bady from the external medium. We shall assume that 
the perturbing torques Mi (i = 1, 2, 3) (see (1.3)) have 
the form /71 

where 1, and x3 are certain constants of proportionality which depend an the properties of 
the medium and the shape of the body* 

The first three equations of (2.81 in this case, in variables a, b, 6, 9, 9, a, y , become 

a’ Z -42Fr1 (a + m,, sin 0 sin a) - “zm,, cos 0 fb - 

ID,, sin 6 cos ez) -+ ~~A-~f,K.!l,,f3 sin 8 sin a -f a2KD,,6 cos 0 (b - 
Z&-D,, sin 0 cos a) - ~~ir&Lf,, sin 8 sin cz- eK’D,, sin 0 sin a@ COSCL+ 

b sin a) + E~K’D,,S sin 8 sin a (a CDS a f b sin a) 
b' = --EA-'Zx (b 

KD,, sin 0 sin a) - 
- KD,, sin 0 co3 a) + eKD,, cos 0 (a + 
eeKA-'Z,D,,S sin 0 cos a - a2KD1,6 cos 0(12-t_ 

2KD,, sin 0 sin a) + .s"Z,KD,, sin 0 cosa+ EK’D,, sin 0 cos a. (a cos a + 
b sin f~) - e~:2X'D1,6sin 8 cos ~(a ~0s a + b sin a) 

6' = --EPZ,r, - A-'I,& 

(3.2) 

The other equations of system (2.81 remain unchanged. 
To construct an approximate S5lUCiOn of systen 13.21, we will use the averaging proceaure 

described in Sect.2. The vector-valued functions Al and L-II are determined from formulae 
(2.13): 

A, = (tq”)), (L’ = 1, 2, . - -1 5), B, = @3$3'}, (r' = 1, 2) 

si,cr) = --A-'Z,a - KD,,b cost3 - +qr~,,b sin e 
Ai@) = -A-*Ilb + KD,,a cos 0 + l/,K’DIIa sin 8 

A,(3) = -C-“I,?-,, A,(‘) = fall, A,(“) = 0 
B,(l) = CA-V - ml,, cos 9, B,(2) = (C - A)ATl 

(3.3) 

The fourth and fffth components of th@ vector-valued function 
may be written 

'cl (z&J"'} (i = i, 2, . * *I 5) 

Nate that combinations of the type MI0 eos y + MS" ain y and M,"siny - _W; ca3y, as folIows 
from Eqs*f2.8) and (3.2), do not: depend on y and the right-hand sides of these equations 
depend only on one fast variable cc. This fact, pointed out in /3/, is analogous to the suf- 
ficient conditions obtained in /l/ for the averaging procedure to be applicable to the 
equations of motion with respect to the angle of nutation alone. The solution of Eqs.(2.12) 
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is then simplified. 
The vector-valued function 

be written as 
-%(x*). after suitable reduction using formula (2.151, may 

A, (x”) = (A$‘)] (i = i, 2, . . ., 5) (3.5) 
A&l, = KD,, [Sb eos 0 - ‘12KD,,Ab (3 co9 8 - 1) - I,C-'cr CDS @) + 

1i,KD,,6b sin 6 - ‘I,AD,,b (X’ sin 0)% - ll~AK’~~~bK sin 28 _ 
ziJ,D,,ad (K sin B)/dR 

AJ2) = -KD,, [Sa ces 8 - “I,KD,,Aa (3 co9 0 - i) -C I&lb cos 01 - 

V,K’D,,Ga sin FJ + 'I,AD,,a(K' sin e)e + VLdk"D,,aR sin 28 - 
~i~~~D~~b~ (K sin 8)idB 

A,@, = --c-11,&, AJ-1) = KD,, (-6 -t ZiD,, cos8) 

A,@) = IrKI),, sin U 

Let us determine the solution of the averaged system of equations to a first 
mation (2.16), 

approxi- 
taking into account (3.3), for the slow and fast variables: 

where the quantities a", b", n, are determined by (2.3); @a, cf, and To are constants, 
equal to the initial values of the Euler angles at t = 0. Comparison of expressions (3.6) 
for the slow variables a('), b(r) with the parallel formulae (4.5) of /3/ in the case when 
K = const shows that the expressions are identical. 

On the basis of these formulae, using (2.26), one can construct the components of the 
function .QU @) corresponding to the variables 9 and 0, writing them as 

*iaD (1) :z q0 +- eK,D,$ + St’) 

s(‘) = E%K,~D,, cm 6, t_ ‘/,EiKn~21-T&Z - 

EAZ~,, exp (-.sA-'l,t) C" sin (CL(') + u)!'sin B. 
Be' (t) = B0 -t- .&I,K,D,, sin 0, t_ &AD,, esp (-PA-‘l,t) C” sin (r*(*) - ~1) 

cos u = sin p = b(l) exp (z.4-“Z,t)iC”, C” :-: (u” + boz)‘/a 

(3.7) 

Comparison of these expressions with formulae (4.71 of /3f shows that the two groups are 
identical at K = K,. In formula (3.7) for 0," the term of order E is the product of 
the slowly exponentially decreasing factor exp (--F._-l-r1,1), representing energy dissipation, 
and the oscillating factor sin (a(l) - p). 

The value of the damping constant and the nature of the slow variation of the phase of 
small oscillations for b(r), a(l), can be read off from formulae (3.6), which differ from the 
parallel formulae (4.5) of /3/ in the value of W. 

The term S(l) (F, 2) in the formula (3.7) for +eS(t) is of order F over the time 
interval (0, Fe-“). The expression for the angular velocity of precession w,, = K,C-“r,+ is 
known from the approximate theory of gyroscopes /8/. Our expression for ‘s(l) (e, t) improves 
this formula for the problem. 

For the example considered above, with the restoring torque given by formula (2.27) and 
taking formula (2.13) into consideration, the solution of the averaged system of equations 
in the first approximation (2.16) for a(l), b(l) P 8(l), y(r) is of the form (3.6) . * , Only the 
expressions for *"' and &1 change; they may be written as 

#', = D,, k (0,) t + ?jlo (3.8) 
&) = CA-+,$ - D,,l; (tt@) I WI 0, - "/,**A-V$$* -t % 

In (3.6), 

while k(B,l in (3.8) is defined by (2.27) with K=H, 
The components of the function ZED (0 corresponding to the variables @ and 8 in OUT 

example have the form 
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(3.9) 

II+,* (t) = 8, + eflD,, sin Cl& (8,) t + RDllA exp (-EA-lf,f) C'sin (&) - 11) 

cos (I = sin p = b(l) exp (~.4-~l,t)/C” 

4. The case of a smatt constant tore. Let us consider the motion of a rigid body in 
the Lagrange case under the action of a torque which is constant in the body axes. Then the 

torques of the forces acting on the body have the form M, =: aeM,*= e*Yi" - const (i = $,2,3). 

To construct an approximate solution of system (2.8) using the expressions for Mi I we apply 
the averaging procedure of Sect.2. The vector-valued function 3r is determined as in (3.31, 
and the vector-valued function A, obtained from (2.13) has the following components: 

A,@) = -KD,,b cos 0 - l/,K‘DIlb sin 0 (4.1) 
AliS) = -KL),,a cos 0 + xI,R’L)l,a sin 8 

A,@) = C-'j$fS*, A,(') = KJ.?,,, A,("> zz 0 

The fourth and fifth components of II 1 are represented by (3.4). The function A, (x*) 
is determined from (2.15) and may be written as 

_&(I) = DI,b [6K cm 8 - ‘I,_~ K=D,, (3 COS’ 8 - I) -+ ‘i,K’a sin 0 + 

‘isAD,, {K’ sin O)* - I/& K’DzIK sin 201 

A,cZ) = -_D,a [CjKcoS l3 - ‘,f2AKPD,, (3 COS= 8 - i) -+ 'i,K"& Sin % i- 

V.&J,, (K’ sin B)% - V,AK’L&K sin 281 
d,(a) a 0, @) = -KD,,S -f- AKW,, cos 8, dde) = 0 

(4.2) 

The solution of the averaged system of equations in the first approximation (2.16), 
where the coefficients are as in (4.1). is as follows for the slow and fast variables: 

(4.3) 

(the notation is the same as in (3.6)). 
We note that the only component of the constant torque occurring in the solution of the 

first-approximation averaged system (4.3) is the component MS* in the direction of the axis 
of symmetry. The projections MI*, Ma* of the perturbing torque vector cancel out on 
averaging. A comparison of formulae (4.31 for the slow variables a('), b(l) with the parallel 
formulae (5.3) in /3/, with K = const, shows that the formulae are identical. 

By (2.26) and formulae (3.4), (4.2) and (4.31, the components of the function 
corresponding to the variables 21 and 0 are 

xev (t) 

In the expression for 
a', b”. 

%", the bounded oscillating term involves the non-zero initial data 
The term W, as in the previous problem, corrects the formula % = KCmlr,-‘, 

already known from the approximate theory of gyroscopes, for the angular velocity of 
cession. 

pre- 

We note that the formulae for the angles of nut&ion and precession do not involve tbe 
parameters of the perturbing torques if attention is limited to the first approximation. The 
effect of the perturbations on the regular precession of the body is not taken 
sideration in that case, 

into con- 
so that construction of the second approximation is indispensable. 

Going back to our example, when the restoring torque depends on the angle of nutation as 
in (2.7) and taking (2.13) into consideration, 
system (2.16) for JI), b(l), 60) @I>, $1) 

the solution of the first-approximation averaged 
has the form (4.3). 

e'l' change, being written as follows: 
Only the expressions for $P and 
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In (4.3) 

(4 5) 

and k(8,) in (4.5) is given by formula (2.27) with O=O,. 
The components of the functions s" (t, corresponding to the variables $1, B in our 

example are written as follows: 

1. 

2. 

3. 

4. 

5. 

6. 
7. 

8. 
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